Egg Coagulation in the Kitchen: Custards

One of the most important functions of eggs is to provide structure and determine texture. We saw this with breads, cakes, cookies, and muffins, with brownies, and also with meringue. But there’s one more category of baked good that depends on eggs: custards and creams. Eggs set and thicken crème brûlée, quiche, cheesecake, pastry cream, and crème anglaise. In this post, we’ll first review how an egg cooks, then explore how different ingredients and techniques affect this process to create smooth custards and creams.

Egg Foams in the Kitchen: Meringue

In the last post, we covered eggs’ many roles in cakes, cookies, muffins, and breads. But eggs are even more versatile when we consider what they can do with air. Think about it: egg whites on their own are dense and chewy. But with air (and sugar), they become light, crisp, melt-in-your-mouth meringue cookies. Add a few more ingredients, and we can make macarons, pavlovas, cake frostings, soufflés, and sponge cakes. In this post, we’ll explore how meringue forms and how we adjust its texture for different bakes.

Eggs in the Kitchen: Water, Protein, and Fats

In the last post, we explored how eggs are made to support growing chicks. Now, we’ll see how those same eggs can contribute leavening, structure, and flavor in the kitchen. This post will focus on the functions of eggs in bakes such as cakes, muffins, breads, brownies, and cookies, but we will turn to meringues and custards in future posts.

Fats and Water Don’t Mix: An Introduction to Polarity

In the last post, we reviewed the basic chemical structure of fats and oils. They’re chains of carbon atoms called fatty acids bundled into triglycerides. Our ingredients contain unique ratios of fatty acids with varying lengths and saturations, and as a result, they have different melting points, stabilities, and effects on our health. However, inContinue reading “Fats and Water Don’t Mix: An Introduction to Polarity”

Leavening in the Kitchen: Baking Soda and Baking Powder

Baking soda and baking powder are used in all sorts of baked goods including cookies, cakes, and muffins. They can be used independently or in conjunction. And although they both contain the word “baking” and produce carbon dioxide to help leaven our bakes, there are differences that are crucial to understanding how they work in a recipe.

Proteins in the Kitchen

In the last post, we described proteins as strings of amino acid beads that we reshape when we bake. In this post, we’ll discuss how we manipulate some of the most important factors in protein shape such as water availability, acidity, and temperature, and we’ll explore the chemical effects of these changes.

Gluten in the Kitchen

In the introduction to gluten, we described gluten as a protein that contributes to the structure and texture of baked goods. The ideal amount of gluten depends on what we’re making, and there are several ways we can influence the extent of gluten development. We can first choose a flour based on its protein content,Continue reading “Gluten in the Kitchen”