Oil Temperature in Castella Chiffon Cake

Castella cake is a light, fluffy cake popular in East Asia, and there are two main methods to make it. Today, we’re taking a closer look at the Taiwanese version (古早味蛋糕, gǔzǎowèi dàngāo). A typical recipe starts with cake flour and cornstarch in hot oil, then adds milk, egg yolks, and an egg white meringue. In this post, we’ll focus on the ingredient that’s less common in cakes: the hot oil. We’ll bake two cakes, one with hot oil and one with oil at room temperature, and we’ll discuss the effects of the hot oil on the flour and cornstarch, the batter, and the final baked cake.

Tangzhong Method for Bread

Tangzhong (from the Chinese 湯種, tāngzhǒng) is a breadmaking method derived from the Japanese breadmaking method yukone or yudane. It’s recently gained popularity largely thanks to the Chinese cookbook 65°C Tangzhong Bread by Yvonne Chen. For the tangzhong method, a small portion of the flour and water are cooked together to 65°C (149°F), then added to the rest of the bread ingredients. Tangzhong is known to keep breads softer and moister for longer due to the gelatinized starch in the cooked flour. To taste the effects of tangzhong for ourselves, we made two sets of bread rolls with the same ingredients. Half the rolls were made with tangzhong, and half the rolls were made without.

Cooking Bread with Steam

Bread dough doesn’t have to be baked. In Chinese cooking, for example, it’s often steamed to make buns. Commercial western-style bakeries also use steam to bake larger loaves with shinier, crisper crusts, an effect home cooks replicate with Dutch ovens. In this post, we’ll compare three methods of cooking bread dough using 花卷 (huājuǎn, literally “flower roll”), a type of Chinese steamed bun speckled with scallions. We’ll compare the traditional steaming method to baking and to baking with steam.

Starch in the Kitchen: Choosing a Starch

In the last few posts, we discussed starch’s different roles in baked goods and other desserts. But some starches are better than others for certain applications. Cornstarch, for example, is useful for gelling custard pie fillings, but if we refrigerate a cornstarch fruit filling, it gets cloudy. Tapioca starch, on the other hand, won’t gel into a solid you can slice, but it remains clear once refrigerated. In this post, we’ll explore the molecular differences between different starches and their consequent effects in our desserts.

Starch in the Kitchen: Stabilizers and Thickeners

In the last post, we focused exclusively on flour and the role of its starch in baked goods. Today, we’ll explore how starch’s chemical properties make it useful in desserts such as buttercream, meringue, and custard. We’ll also consider how other ingredients affect starch in these recipes. Starch is a drier. As we discussed inContinue reading “Starch in the Kitchen: Stabilizers and Thickeners”

Starch in the Kitchen: Flour

In the last post, we discussed the molecular details of starch: what it is, where it comes from, and how it changes with water and heat. Today, we’ll apply those concepts to baked goods with a focus on the starch in wheat flour. Although flour is often noted for its gluten, it actually contains 68–75% starch. So when we consider the chemistry of any baked good that contains flour, be it cake, bread, or cookies, starch always plays a role. And in foods cooked in steam or boiling water, starch helps create textures as diverse as soft skins on steamed buns, chewy crusts on bagels, and crisp shells of choux pastry.

Starch: An Introduction

As bakers, when we think of starch, we often think of its function as a thickener in custards and sauces. Although starch is indispensable for pie fillings and pastry cream, it also plays a role in the pie crust and choux that hold them. Starch is as important as gluten for structure and texture in baked goods. It feeds yeast and interacts with proteins, sugar, and fats. We use it to form thin, crisp crusts on bread, chewy crusts on bagels, and tall shells of choux pastry. So let’s dive into the science of starch, starting with a description of what it is and an understanding of how it interacts with heat and water.

Chemical Leaveners in Muffins

In the last post, we explored the roles of baking powder in muffins by taking it out of a recipe and then by adding in extra. Today, we’re going to continue experimenting with leaveners in muffins, but now we’re going to add baking soda into the mix. We discussed the differences between baking soda and baking powder in a previous post, but now we’ll see how these differences play out in a baked good.

Baking Powder in Muffins

Baking powder is used in such small amounts it’s often overlooked in ingredient lists. But this unassuming powder is crucial for volume and tenderness in baked goods such as muffins, biscuits, cookies, and cakes. In this experiment, we varied the amount of baking powder in muffins to see how the muffins would change in appearance, taste, and texture.

Leavening: An Introduction to Gases

What’s the difference between a light, fluffy cake and a short, dense one? A flaky pie crust and a tough cracker? The answer lies in leavening. Leavening agents lift and expand batters and doughs to make fluffy cakes, flaky pastry, and light bread. There are several leaveners: air, baking soda, yeast, and steam are a few of the most common in the home kitchen. In this post, we’ll explore how all leaveners work. Then, we’ll dive deeper into specific leaveners in the next few posts.